
Trust between Humans and AI

Aakriti Kumar

Ginny!” said Mr. Weasley, flabbergasted.
”Haven’t I taught you anything? What have I
always told you? Never trust anything that
can think for itself if you can’t see where it
keeps its brain?”

J.K. Rowling, Harry Potter and the Chamber
of Secrets

1 Introduction

The ubiquity of AI systems in our daily lives is undeniable: we talk to AI assistants, we let algorithms drive

our cars, we seek their recommendations on what to buy, and so on. While we have made significant progress

across varied domains in building fairly accurate and efficient AI systems, in most cases there still exists a

need for human supervision and/or intervention.

This need for collaboration between humans and AI is due to many reasons. On one hand is the comple-

mentary nature of their abilities. While AI can look through vast amounts of data and make mathematically

precise inferences, it still lacks the human ability to understand abstract concepts and generalise with much

less data. On the other hand, a critical consideration that necessitates such human supervision, especially

in high-stakes decision-making, is that algorithms are not infallible. There have already been instances that

expose biases in algorithmic recommendations due to limited or biased training data. People have also re-

ported cases of faulty recommendations by algorithms due to technical glitches [2]. To effectively leverage

complementary abilities and to efficiently mitigate algorithmic errors, we need to design systems that are

well understood and appropriately trusted by the human user. To this end, researchers have emphasised the

importance of improving model interpretability and explainability. These efforts are focused on conveying

the working and final recommendation of the model in a way that facilitates human understanding of the

model. However, recent work by Lakkaraju and Bastani [26] and Bansal et al. [3] have shown that sup-

plementing algorithmic decisions with more information or explanations doesn’t necessarily help the human

user make better decisions. One possible explanation for this observation is that humans are unable to build

trust calibrated to the ability of the algorithm.
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As Huang and Fox [21] suggest, decisions made in the real world are based on a mixture of rational calcu-

lations (within the limits of the information and mental resources available) and trust. While interpretablity

efforts strive to make a model more understandable, they do not actively account for human reliance or

trust in the model. In this review, we highlight the need to think about human trust when designing for

effective collaboration between humans and machines. We review work on human-machine interaction with

a focus on understanding how and when humans trust machines 1. The paper is organized as follows. In

Section 2, we briefly review the different ways trust is defined across fields. In Section 3, we review some

popular models of trust between humans. In Section 4, we move to a discussion of trust between humans,

the different factors that affect human trust in machines, and some models of trust between humans and

machines. In Section 5, we conclude with some thoughts on the possible research directions.

2 What is Trust?

Trust is essential to the functioning of our society. Whether it is at our workplace, at home, or on the roads,

everyday we implicitly trust others to more or less do what we expect them to do. We trust other drivers on

the road to follow the rules, we trust our coworkers to work on tasks assigned to them, we trust our loved

ones to look out for us, and so on. This trust is based on a combination of our past experiences and some

assumptions about the world we inhabit. Without trust, the efficacy and efficiency of our day-to-day life

would be severely impaired.

Researchers across domains have attempted to formalize trust. Cho, Chan, and Adali [11] provide a

comprehensive survey of how trust is defined across disciplines. Based on the many definitions shown in

Figure 1, the authors summarize trust as “the willingness of a trustor to take risk based on a subjective

belief that a trustee will exhibit reliable behavior to maximize the trustor’s interest under uncertainty of a

given situation based on the cognitive assessment of past experience with the trustee”.

House [20] was one of the first to capture the multidimensionalality of trust by defining it as a combination

of three specific expectations: (1) a general expectation of the persistence of the natural (the expectation

that natural physical laws are constant) and the moral social orders (we expect human life to survive, and

mankind and computers to be good and decent); (2) a specific expectation of technical competence of the

trustee; (3) an expectation that the trustee is responsible, will carry out their duties and in situations where

it is needed the trustee will place others’ interests before their own.

Rempel, Holmes, and Zanna[38] provide an alternate but important account of trust as a dynamic

expectation that undergoes predictable changes as a result of experience in a relationship. Early in a

1We use the terms machine, AI, algorithm, and decision aid interchangeably to describe a black-box model.
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Figure 1: Multidisciplinary Definitions of Trust (Source: [11])

relationship, the trustor bases their trust upon the predictability of the trustee’s behaviours. Later in a

relationship, trust is based on the “attribution of a dependable disposition” or reliability of the trustee

which is judged by the trustor through accumulated behavioural evidence. The final stage is marked by the

development of faith, i.e, the confidence that the trustee will continue to remain dependable and predictable.

Faith is strengthened by events which indicate intrinsic motivation of the trustee to remain in a relationship.

Another useful characterisation of trust provided by Marsh [32] separates trust into three distinct types:

(1) Basic Trust - the disposition of a person to trust something new that is encountered. This trust is based

on an individual’s life experiences and is said to eventually become a stable personality characteristic. It is

expected that individuals with a greater basic trust will be more trusting of another agent on initial contact

when compared to someone with lower basic trust. (2) General Trust - the overall trust an agent places in

another agent. This is not with respect to a specific situation or task. (3) Situational Trust - an agent’s

trust in another agent in relation to the context of the interaction.

While there are different ways trust plays into our everyday interactions, the key takeaways from the

many definitions of trust are: First, trust is an expectation of or confidence placed in or reliance on the

other, i.e, trust is always in relation to an ’other’ - we trust in someone or something [34]. Second, trust is

important to any form of collaborative work [11]. Third, trust implies there is risk associated with the task

at hand and uncertainty associated with the trustee [32]. Fourth, trust is oriented towards future rewards,
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behaviours or events. Fifth, trust is dynamic - it is built over repeated interactions [32]; it grows with

cooperation, and diminishes with betrayal.

3 Models of Trust between Humans

The previous section discussed a handful of the many perspectives on trust. We established that trust does

not exist in a void, but requires two agents, a trustor and a trustee, to interact repeatedly to accomplish a

task in the face of uncertainty and incomplete information. In this section, we review some models of trust

between a human trustor and a human trustee.

A popular paradigm that has been used to study decision making between two humans with differentiated

roles is the Judge-Advisor system (JAS) [39]. The JAS paradigm makes a distinction between one or more

advising agents or advisors who provide recommendations and information, and a judge who makes the

final decision. In this model, the judge is assumed to have lower expertise than the advisor. The judge is

dependent on the advisor and hence trust in the advisor is of importance to the judge. Through a series

of experiments, Sniezek and Van Swol[39] highlight the importance of cues such as high confidence ratings

by Advisors on the Judges’ ratings of trust and their tendency to follow advice. They also showed that the

level of trust a judge has in an advisor is directly related to the degree to which the Judge took the advice

into account and in the Judge’s confidence in their decision.

Economists investigate behavioral manifestations of trust through games such as the prisoner’s dilemma

and the trust game. Berg, Dickhaut, and McCabe [4] proposed the trust game to measure trust between

two agents. In this game, an agent (A) is given an initial sum of money x. In the first step of the game,

A (the trustor) can choose to share a fraction c of the money with B (the trustee) or keep the money to

themselves. The game ends if A chooses to not share any money with B. However, if A decides to share

some amount with B, B receives three-fold the amount A transfers and the game continues. In the second

step, B is given an option to reciprocate the gesture and share any amount with A. In a repeated game, it is

in the interest of the two players to cooperate. Prisoner’s Dilemma is another popular game which requires

players to repeatedly decide whether to cooperate with their partner or to defect. It is different from the

trust game in that the players make their decisions simultaneously and hence can only base this decision on

their interaction history with the other player.

Kennedy and Krueger [24] use a version of Berg’s trust game as a task to investigate trust and captured

both - participants’ behavioral data and their brain activations under separate Magnetic Resonance Imaging

(MRI) scanners. They implemented a series of models using the ACT-R framework. They first implemented

a “like-me” model in which the first player tries to infer what the second player would do by placing
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themselves in the other participant’s position. This model consistently selected a non-trusting strategy for

the first player and a defect strategy for the second player. This prediction did not match the observed data

where participants cooperated most of the time. They next implemented a model of ‘unconditional trust’

where both participants always cooperate. This matched the strategy for 16 out of 22 pairs of participants.

The authors hypothesise that allowing for some randomness or a tit-for-tat strategy might produce results

closer to the observed data.

Zak, Kurzban, and Matzner [43] also conducted a study that used a one-shot trust game where partici-

pants were given a single intranasal dose of oxytocin or a placebo. They found that oxytocin helped humans

overcome their natural aversion to uncertainty in the behaviour of other.

4 Trust between Humans and Machines

We now move to a discussion of the dynamics of trust between humans and machines. More often than

not, humans work in teams of varying sizes to accomplish a wide variety of tasks. The industrial revolution

greatly altered the structure of collaborative work by introducing machines in a previously human-dominated

system. Now, AI is slowly permeating areas that were hitherto thought to be exclusively dependent on

human subjectivity and expertise. From doctors who look towards binary classifiers to decide which patients

to send to outpatient programs [23], to courts using risk assessment tools to estimate if criminal defendants

will engage in unlawful behavior in the future [17], humans are increasingly reliant on complex algorithms

to support their decision making and everyday workflow.

Collaboration between agents is a social process and human-machine teaming is no different. Hence,

trust calibrated to the machine’s ability is critical to effective collaboration between humans and machines.

Muir [34] extends work by [20] and [38] on trust between humans and generalise it to trust between humans

and machines. Muir proposed that trust in a decision aid is calibrated according to (1) predictability: how

predictable are the aid’s recommendations, (2) dependability: how dependable is the decision aid (which

they expect can be inferred by a summary statistic of accumulated behavioural evidence), (3) faith: when

working with AI, humans lack a complete understanding of the system’s working but they still work with

it because they appreciate the vastness of the problem and possible outcomes and realize that their own

knowledge of the system is incomplete. These factors underlie ‘a leap of faith’ on the part of the human.

Hoff and Bashir [19] classify trust in an autonomous system into three categories: dispositional, situ-

ational, and learned. Dispositional trust is based on characteristics of the human. Merritt and Ilgen [33]

suggest that humans have a general propensity to trust or distrust a machine just as they have have a general

propensity to trust or distrust another person. Factors that influence dispositional trust do not vary greatly
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with time, but they impact human decision-making during interactions with an autonomous system. Situa-

tional trust is a result of a combination of factors that are external to the human (task difficulty, potential

risks) and those that are internal to the human (self-confidence, expertise). Finally, learned trust is based

upon a human’s overall experience with the autonomous system.

A related but important specification of appropriate trust behavior is provided by Lee and See [27].

They describe mismatches between trust and the capabilities of automation in terms of (1) calibration: the

correspondence between a person’s trust in the automation and the automation’s capabilities, (2) resolution:

the precision with which a judgment of trust differentiates levels of automation, and (3) specificity: the

degree to which trust is associated with a particular component or aspect of the automated system. We

restrict our discussion in this paper to the calibration of trust.

4.1 Pitfalls and Biases

The advice-taking literature has shown evidence that humans discount advice from peers [5] and tend to rely

more on their own judgment. Furthermore, an extensive literature on overconfidence repeatedly demonstrates

that individuals report excessive unwarranted confidence in their own judgment relative to that of their peers

[15]. Working with a machine is no different. Research has shown that humans are susceptible to a variety

of misjudgements and biases when seeking advice from machines.

Parasuraman and Riley [36] describe inappropriate reliance on machines as misuse, disuse and abuse of

automation. Misuse refers to failures that occur due to over-reliance on automation. Disuse refers to the

failures that occur when humans rejects the help of automation when it could have been useful. Abuse refers

to incorrect deployment of automation by the designers and managers - for example, using automation where

human input is critical. Automation abuse can also increase misuse and disuse of automation by humans.

Researchers have identified two competing cognitive biases that humans are likely to display when working

with machines: algorithm aversion and automation bias. Dietvorst, Simmons, and Massey [12] define algo-

rithm aversion as the tendency of a human to disregard the recommendations of a machine after observing

that it made a mistake. In contrast, automation bias is the tendency to over-rely on machine recommenda-

tions [16]. Both these biases lead to sub-optimal outcomes. Hence, calibrating human trust to match the

algorithm’s prediction accuracy and general ability is crucial for effective human-machine teamwork.

4.2 Factors that affect Trust

In this section, we identify and summarize factors that may affect a human’s trust in a machine. These

factors can be categorized as relating to properties of the different components of this collaboration:(1)the
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Figure 2: Components of a typical human-machine collaboration setting

human, (2)the machine, (3)the task or context in which the human and machine collaborate, and (4)the

interaction between the human and the machine. Fig 2 shows the components of a typical human-machine

collaboration setting.

4.2.1 Properties of the Human

Human Expertise Medical diagnostic decisions, recidivism judgements, child welfare, and fire risk as-

sessment are a few examples of places where AI attempts to supplement human experts. However, there is

evidence that experts incorporate any advice differently than non-experts. Jacobson et al. [22] found that

expert attorneys are less likely than law students to give weight to advice in a verdict estimation task. found

that human experts tend to dismiss algorithms. Logg, Minson, and Moore [30] second this finding by showing

that experts heavily discounted advice from all sources including algorithms. In a recent paper, De-Arteaga,

Fogliato, and Chouldechova [2] show that call-workers in a child-welfare center were able to override the

risk assessment tool’s decisions when the tool displayed mis-estimated scores. The authors hypothesize that

the expertise of the call-workers had a role to play in the their ability to make predictions independent of

the incorrect recommendations shown by the tool. However, in contrast to [31], the authors did not find

the workers to be dismissive of the tool completely as there was an increase in overall performance of the

workers.

Individual Differences It is well-established that individual differences affect the trust behavior of people.

Merritt and Ilgen [33] show that individual differences in personality (extraversion) and the predisposition to

trust machines play an important role in trust in automation use. People have different baseline propensity

to trust machines and trust in general. The authors demonstrate the need to consider individual differences
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when discussing trust in machines. In their paper, they capture via trust ratings the difference in perception

of the machine by 255 users while keeping the machine characteristic constant. There is some evidence that

perceived self-confidence may influence a human’s choice of using or discarding machine help especially when

the human makes a mistake without the machine’s help [29] [28]. There is also evidence that familiarity with

mathematics and ML make people more likely to listen to algorithmic advice [40].

Demographics Studies have shown differences in trust behavior between people of different cultures and

age groups. Akash, Jain, and Misu [1] worked with a geographically diverse set of particpiants to investigate

dispositional trust or trust propensity of an individuals. They replicate a finding in the literature that

Americans trust autonomous systems less than Mexicans and Indians, respectively. They also found that

mistakes by the AI system induced stronger distrust in US participants than in Indian participants. In

terms of differences across genders, the authors found that men trusted AI more than women and that

women are more variable in their trust towards AI. However, other studies have shown mixed results for

gender differences in trusting behavior towards AI. Haselhuhn et al. [18] found evidence that women show a

smaller dip in trust in the AI when compared to men when they see algorithmic errors. There is no conclusive

evidence that genders differ in their trust attitudes towards AI.

Training De-Arteaga, Fogliato, and Chouldechova [2] investigated how call-workers at a child welfare

hotline service integrated recommendations from a risk assessment tool into their decision process. Call-

workers decide whether a call concerning potential child neglect or maltreatment should be screened in for

investigation. Around a year after deployment, it was discovered that a technical glitch in the tool had

caused some of the scores shown to the workers to be mis-estimated. The data from this welfare center

presents a unique opportunity to look at algorithm aversion, automation bias when experts work alongside

algorithms in a natural setting. The tool was deployed to help workers identify high-risk cases when the

information communicated in a call was inconclusive. It only provided a final risk score to the call-workers.

Note that no explanations for these score were provided to the workers In a retrospective analysis of the

data, authors found that call-workers almost always dismissed the machine’s recommendation on instances

where the risk score had been considerably underestimated. However, they did see a rise in the overall

accuracy of the call-workers. Based on conversations with the call-workers, the authors hypothesize that

training may have had a key role to play in their well-calibrated incorporation of the tool’s recommendations.

Call-workers received explicit instructions to treat the tool’s recommendation as complementary information

and not rely on the score as a replacement of their own judgement. We have already established that framing

the decision to use an algorithm as an all-or-nothing decision is counterproductive and may lead to higher
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levels of algorithm aversion. The effect of framing a machine’s contribution to the collaborative work, and

communicating the machine’s role and scope to the human (in the form of training) on human integration

of machine recommendations is a promising avenue of further investigation.

4.2.2 Properties of the Machine

Performance A machine teammate is helpful if it decreases the human’s workload, speeds up the task or

increases the accuracy of the human in the task. We use performance as an umbrella term to capture different

properties of a machine such as accuracy and predictability. Higher accuracy models are preferred to lower

accuracy models. More importantly, more predictable models are preferred to less predictable models. Trust

can develop when a systematic fault occurs for which a strategy can be developed [27]. The influence of a

mistake on trust depends on both the magnitude of the error and the how unexpected or unpredictable it

was. A small but unpredictable fault affects trust more than a large fault of constant error.

Interpretability and Transparency The literature on advice taking shows a robust effect of discounting

advice from others because people don’t have access to others’ reasoning. Model interpretability is essential

to establishing a useful working relationship between a machine and a human. However, supplying more

information about the workings of the machine to the human has not shown very promising results. Bansal

et al. [3] saw no improvement in team performance when they added explanations to model output. Suresh,

Lao, and Liccardi [40] showed that participants over-relied on both correct and incorrect machine recom-

mendations even when they were independently able to do that same task correctly. The authors also found

that people were likely to accept a machine’s recommendation despite being given information that points to

very low confidence of the machine in it’s recommendation. While increased transparency has been shown

to improve human trust in the AI, it increases the workload of the human. Akash, Jain, and Misu [1] make

a case for optimising transparency or using it sparingly. These results emphasise the need to integrate the

humanness of stakeholders into model interpretability design considerations. As [27] point out, the objective

is not to design systems to increase reliance or trust but to design for appropriate reliance and trust.

4.2.3 Properties of the Task or Context

Difficulty Gino and Moore [15] reiterate a robust finding in the advice taking literature that people put

too little weight on advice from others when the task is easy and too much weight when the task is difficult.

Complex tasks and higher workloads cause increased stress on cognitive capacity. While some studies have

shown that humans may become overuse AI advice under increased workload, some others have found that

increased trial difficulty improved performance. This suggests difficulty can motivate closer inspection of the
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task and decrease complacency [16].

Objectivity Castelo, Bos, and Lehmann [9] found that people clicked on ads for algorithm-based advice

less than on ads for human-based advice when the task is subjective (dating advice), but not when the task

is objective (financial advice). Logg [31] found that people seek algorithmic advice for objectives decisions

and human advice for subjective decisions. This is in sync with the finding that people view machines and

AI systems as more rational and objective than humans. Researchers have demonstrated that people exhibit

algorithm aversion in subjective domains. Participants in work by Promberger and Baron [37] preferred

a medical diagnosis from a doctor and reported feeling less responsible for the decision when taking the

advice from the doctor. Tasks involving recommendations about books, movies, jokes also showed algorithm

aversion [25]. Hence, designing for appropriate reliance requires thinking critically about the application’s

perceived difficulty and objectivity.

Risk Trust presupposes a situation of risk. Taking a risk reinforces trust that is there already if there

is a favourable outcome of collaborating. In the event that an unfavourable outcome is observed, the risk

associated with trusting is exposed, and trust decreases accordingly. If it was high initially, and the risk of

rejection was great, then rejection causes a large loss of trust [6]. This prediction is in line with what Logg

[31] show happens when people see a machine err early on in their interaction. Risk associated with a task

can also be used as a proxy for how important the task is perceived to be.

4.2.4 Properties of the Interaction

Decision Autonomy Dietvorst, Simmons, and Massey [13] found that people are less likely to display

algorithm aversion when working with an imperfect algorithm if they have some control over the final

decision. In a series of experiments that allowed participants to modify the algorithm’s forecast to different

extents, the authors observed that people were more likely to positively weight and use the algorithm’s

recommendation as long as they were able to incorporate their own input and participate in the ultimate

decision. The authors also highlight that participants were relatively insensitive to the amount by which

they could modify the algorithm’s forecasts.

Another configuration of decision making hierarchy is where the human is allowed a choice between taking

advice from a machine or another human/ human expert. Logg [31] find that if available, humans prefer to

take advice from human experts over algorithms. However, in some follow-up work [30], the authors found

competing evidence that people trust predictions more when they believe that the predictions come from

an algorithm as opposed to a human even in ‘subjective’ domains such as predicting music popularity and
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romantic matches. The authors observed that this preference for the algorithm was not very apparent when

people were given the choice between using an algorithm’s prediction and using their own prediction (as

opposed to a prediction from another human).

Adaptive User Interfaces It is known that well designed interfaces can increase user acceptance and

trust of the system. Content based image retrieval (CBIR) system proposed by Wan et al. [42] is one such

tool. CBIR systems index and retrieve images based on automatically learned similarity metrics and are

widely used to aid doctors. Doctors can use an image as a query for retrieving similar images from previously

diagnosed patients. Cai et al. [8] investigated the use of CBIR by pathologists. They allowed pathologists to

communicate what types of similarity are most important for each instance hence allowing for customised

search based on the users need. Pathologists reported increased diagnostic utility of the images and higher

trust in the algorithm. Another way that user custom user-interfaces can improve performance is by adapting

to the levels of trust of the user. Estimates of a user’s trust to can guide a system’s decision to engage in trust

dampening/enhancing actions [41]. Akash, Jain, and Misu [1] also demonstrate manipulating human’s trust

and workload dynamics by varying the automation’s transparency - the amount of information provided to

the human.

Interaction History Trust exists because we interact with others more than once. Algorithm aversion,

a well-established finding in the literature, indicates a loss of trust after a human sees the algorithm make a

mistake. Initial interaction and negative interactions have a greater impact on trust than interactions later

in the exchange. Errors observed early on in the interaction result in substantial reliance reduction, whereas

encountering an error later in the interaction affects reliance only temporarily. Dietvorst, Simmons, and

Massey [12] and Logg [31] showed that people relied more on algorithms than themselves before they were

given any performance feedback. However, the authors also observed that this effect was diluted when users

were given more control over how to use the algorithm’s predictions. Lee and See [27] too have emphasized

displaying past performance of the machine to the user.

Feedback The only way to develop and adjust one’s trust in another agent is to see the result of an

exchange with the other agent. Feedback or reward realisation is critical to learn and calibrate expectations

of the other. We know from [12] that seeing an algorithm err makes people less likely to rely on it compared

to themselves or another human’s advice even when they see the algorithm outperform the themselves/the

other human.

The factors discussed above are not an exhaustive set of factors that affect human trust in machines. For

example, we omit discussion on how anthropomorphizing machines affects human perception of and trust in
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the machine.

4.3 Models of Trust in Human-Machine Teams

We now move to a discussion of a few models of trust between a human and a machine. Here, the trustor

is a human and a machine is the trustee and they interact repeatedly to accomplish a task in the face of

uncertainty and incomplete information.

Muir [34] propose the following definition of trust based on Barber’s characterisation of trust between

human agents to trust between a human and a machine: “Trust (T) is the expectation (E), held by a member

(i) of a system, of persistence (P) of the natural (n) and moral social (m) orders, and of technically competent

performance (TCP), and of fiduciary responsibility (FR), from a member (j) of the system, and is related to,

but not necessarily isomorphic with, objective measures of these qualities”. They propose a linear additive

model of trust which takes into account the three expectations held by the human (P, TCP, FR) and their

interactions.

Chen et al. [10] propose a computational model to integrate trust into robot decision making. They model

human trust as a latent variable in a partially observable markov decision process (POMDP). A POMDP is a

framework to model sequential decision making under uncertainty. The proposed model allows the robot to

infer trust of its human teammate, reason about the effect of its own actions on human trust and hence enables

it to choose actions that improve team performance. their model does two things: evaluate trust dynamics

of the human, i.e, evaluate how human trust evolves over repeated interaction with the robot and 2) how

human trust maps to actions. While their model can accommodate a variety of trust dynamics and human

decision models, they employ a data driven approach and learn these models from data which they collect

through a table clearing task performed by humans and robots together. They start with an intuitive and

well established assumption that human trust in a machine evolves based on the performance of the machine.

The task involves a robot clearing a table by picking up and placing a few different items (specifically, 1 fish

can, 1 wine glass and 3 plastic water bottles). The human can do one of two things: intervene or allow the

robot to clear the table object by object; half the times robot picks random policy from all possible policies

and the other half it selects a policy from a set of prespecified policies that were of interest to the authors.

Continuous reports of human trust of the human in the robot is captured. The authors assume that humans

follow the softmax rule to decide which action to take, they specify two competing behavioral models for

the human: (1) Trust free behavioral model (TFBM) - where the human decides between the two actions

probabilistically based on the expected reward of the action. This model assumes that the human’s trust

stays constant in the robot and is unaffected by their interactions (2) Trust based behavioral model (TBBM)
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- where the human’s belief about the robot’s success changes over time and depends on the human’s trust

in the robot. TBBM showed higher team performance than TFBM supporting the author’s intuition that

incorporating trust considerations in choosing strategies improves team performance.

Visser et al. [41] propose a longitudinal approach to trust development and calibration in human robot

teams. They attempt to define and measure ‘relationship equity’ that quantifies the ‘goodwill’ between the

human and robot teammates. Their work was inspired by Gottman’s work on calibrating trust in couples by

analyzing moment-to-moment interactions over longer periods of time and identifying specific trust repair

strategies to be used when trust is too low, and trust dampening strategies when trust is too high.

Logg [31] proposes a ‘theory of machine’ analogous to ‘theory of mind’ which posits that people build

mental models of other people by interpreting their external actions. It also emphasises the importance of

understanding the others’ intentions as a key component to understanding others’ minds. Logg [31] argues

that as interaction between humans and artificially intelligent systems increases, there is a need to understand

how human build mental models of machines. Similar to theory of mind, theory of machine requires people

to think about the internal processes of an AI agent.

5 Future Directions

We highlight some work being done to improve human-machine collaboration and identify avenues for future

research.

Delayed Feedback Most work on AI-assisted human decision-making has focused on characterising how

people create and update their beliefs about the AI system based on immediate feedback/reward. However,

in the real world, the rewards are often delayed. For example, a judge may use recidivism risk predictions

made by an algorithm to inform parole decisions. Or, a doctor may take inputs from a binary classifier to

make diagnostic decisions. In such scenarios, the reward or penalty is observed after a variable time period.

There is a need to investigate the effect of delayed reward on the evolution of the human’s trust in the AI.

Adaptive allocation Parasuraman, Mouloua, and Molloy [35] demonstrate that over-reliance can be re-

duced by adaptive task allocation. They advocate the need for active involvement rather than passive

monitoring to obtain calibrated performance. In a series of experiments, a human interacted with an auto-

mated system where the control was returned to the human for a short while in the whole duration of the

task. The authors observed increased accuracy in automation monitoring by humans after a period of full

control. This is a promising direction for future work that remains under-explored. What are good strategies
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of task allocation to keep humans engaged and alert?

Adaptive explanations The conversation around the benefit of providing explanations about a machine’s

output to the human user is contentious. Some studies report improvements due to explanations only when

the AI outperforms both the human and the best human-AI team. In contrast, Bansal et al. [3] failed

to improve team performance by using adaptive explanation strategies. They observed that explanations

increased reliance on recommendations even when they were incorrect. Zhang, Liao, and Bellamy [44] found

that displaying confidence scores help calibrate people’s trust in the machine but displaying explanations

didn’t have much of an effect. Similar to adaptive task allocation discussed above, there is a need to further

investigate when, what and how much information should be supplied to the human to facilitate calibrated

trust in the machine.

Tasks and the real-world Doshi-Velez and Kim [14] propose a taxonomy of evaluation approaches for in-

terpretability research: 1) Application-grounded evaluation involving real humans and real tasks, 2) Human-

grounded evaluation involving real humans and simplified tasks, and 3) Application-grounded evaluation

with no humans and proxy tasks. The top two levels of this hierarchy are of particular interest to us.

Human-grounded evaluation calls for real humans to be paired with simplified versions of actual real-world

applications or proxy tasks. This is in-line with most research that is done in Cognitive Science. However,

Buçinca et al. [7] demonstrate via a proxy task and an actual decision making task that evaluations using

proxy tasks did not predict human performance on actual decision making tasks. The authors argue that

tasks must be designed in a way that keeps decision-making the focus instead of forcing participants to pay

attention to the AI and it’s explanations. They argue that such a design is closer to a realistic decision

making task where the primary concern is the task at hand and one can decide when how much to attend to

an AI’s input. Designing good tasks to gain insight about human-behavior in real-world decision scenarios

is crucial to the design of decision aids. There is a need to think critically about the design of proxy tasks

designed to capture real-world behaviors.
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